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EQUILIBRIUM CONSTANT IN THE DIFFUSION
THEORY OF CHEMICAL REACTIONS

S. A. Reshetnyak and L. A. Shelepin UDC 530.16

The correct determination of the domains in the phase plane that correspond to the initial and final stages
is important to the construction of a diffusion model of a chemical reaction. In case [1] the system state
passes a potential barrier with a maximum considerably exceeding the temperature of the medium, the reac-
tion between the particles can be considered complete if the spacing between them is greater than the coordi-
nate corresponding to the position of the maximum of the potential function. The reaction rate is determined
here by the probability flux density through a '"'narrow place,'" the vertex of the potential barrier. In the prob-
lem of dissociation of a diatomic molecule, the situation is rather different, The potential function U (x) of
atom interaction in the molecule (its main electronic term) takes on a constant value equal to the dissociation
energy, starting with a certain spacing x;. Although the atom interaction force vanishes for x = x, and the
atoms can be considered free, it would be erroneous to assert that the dissociation reaction is completed upon
removal of the atoms to a distance equal to x;, and its rate is given by the flux at the point x = x,. The Kram-
ers model to compute the dissociation rates of diatomic molecules was first applied in [2] and it was shown
that the values of the rate constants, which agreed correctly with experimental values, are not determined by
the flux at the point x = x; but by the flux at the point x =, where ! is a certain parameter equal, in order of
magnitude, to the particle mean free path in the medium. However, the parameter [ was not defined rigorously
in [2].

The purpose of this paper is to consider the problem of atom association in a diatomic molecule and to
determine the equilibrium constants for direct and reverse reactions, from which the parameter [ is found
single~valuedly.

Since the build~up process for a Maxwell equilibrium velocity distribution for reacting particles is more
rapid as compared with the process of Boltzmann coordinate distribution formation [2], we consider the
Smoluchowski equation in the segment [0, I]:

OM,/0t + OM/9z = 0y My = (uy) (KM, — TOM,/0z), (1)

where M, (x, t) is the probability density of detecting an atom at the distance x at the time t; M, (x, t), prob-
ability flux density; K(x) =—0U/x, force of reacting atoms interaction; u, their reduced mass; and y and T,
friction coefficient and the temperature of the surrounding medium,

Let us supplement (1) with the initial and boundary conditions
My(z, 0) = 5(1&— I); (2)
M0, 1) = M, t) =0, (3)
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where 0(x) is the delta function.

Condition (2) means that the reacting atoms are at a distance I at the initial instant, and condition (3)
corresponds to a ''reflecting'’ boundary at the point x = [ while it would be '"absorbing' in the dissociation
problem [2].

We will assume the process of atom association into a molecule completed if the spacing between them
becomes less than x;. Here the recombination rate constant equals the probability flux density at this point
k= |M;(xy)].

Let us use the asymptotic solution, in the time, of (1), obtained in {2] with the boundary condition (3)
taken into account at the point x = 0:

- U L #f, ‘
M(): feXP —"T 7f:f0+|31<'x)'d7+ ey
' ’ U !
b @) = { exp () g () ao', g2y = [ exn (- F)aw,
xo 0
where x, is the spacing between the atoms in the molecule that corresponds to the minimum of the potential
function U (x), and f; is a certain time-dependent parameter.

At the point x = 1 the boundary condition (3) is equivalent to conservation of normalization of the distri-
bution function

!
{ My (@, pdz=1. (5)
0 .
Substituting (4) into (5), we find a first-order differential equation in f;, which yields when solved with
the initial condition f;(0) =0
. (6)
fo= g*l(l)li — oxp (*t/r)lu
where ¢ = (l)sexp(-——) By () da: is the characteristic time of atom association into a molecule. The form-
ula for the probablllty flux density at the point x = x; hence has the form
: g
My (#) = — 7— (zy) exp (— t/7).
ool -gnoe
L]
For times t « 7 the flux (7) is constant and yields the recombination rate constant
- I £ ()
Y (8)

: U
‘Jexp( T)dm{exp( )g(z)d:c

Let us first consider the case of relatively low temperatures of the medium governed by the inequality
exp (—D/T)l « g(x,), where D is the dissociation energy of the molecule,

The integral in the numerator of (8) equals [2]
g(zy) = oY 2nT/p)/2, (9)
where « is the frequency of atom vibration in the molecule, .

To compute the integral in the denominator of (8) we separate the domain of integration into three parts:
f0, 241, [xps %41, [xy4, I]. The integral in the first domain is negative and is easily given an upper bound in abso-
lute value:

Xo

3
j‘dzexp( U) exp( )Xz’da:’ = a;—".

- X

The following estimate
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is valid for the integral in the second domain, The integral in the third domain yields the fundamental contri~
bution in the denominator of (8) and equals
xy

f = oxp(-3) fa ?%p(%)g(x') @z’ +exp () (@) (x—xo]: oxn(2)1fexo(D)s -t 10 S P, (10
5y * B ) "

%o

Substituting (9) and (10) into (8), we obtain

k= 2T/(wyl?) = 2T6*N?/(uy), I = (6N)L. (11)
Dividing (11) by N?, we find the association constant which is independent of the density of particles in

the surrounding medium
kg = 270 (uy). (12)
In the high-temperature range governed by the inequality
exp (—D/T) > glzy),

the estimates for the numerator of (8) and the integrals of the denominator for the domains [0, x,] and [x,, x]
are the same as for low temperatures, The integral in the denominator over the third segment [x4, 1] is evalu-
ated as follows:

j_exp(;_)jdx(jdx oa(5) 0 om(8)f o (Y -] - i

xy 3 %0 *1

\ RO £ _D e D

N xp

The integral (13) yields the main contribution to the denominator and the formula for the recombination
rate takes the form

ha=

k _ BNIG® (onT IR exp 2) (14)
NY o Wye ,

w T
Comparing (12) and (14), we see that the atom recombination rate into a diatomic molecule changes its

dependence on the molecule frequency and vibrations, the density N and the temperature T of the surrounding
medium as the transition is made from comparatively low temperatures of the medium to high temperatures.

Now, let us divide the diatomic molecule dissociation rate found in [2] by the association rate, and let us
find the equilibrium constant. Consequently, we obtain the identical expression for both low and high tempera-
tures:

k i 1/2 D
o o ()" exp(~2). (15)

On the other hand, the equilibrium constant of the reaction

AB —{— M A + B4 JW
can also be obtained in the form of a ratio between the partial functions of the reacting particles:
kolty = ZsZplZag- (16)
Let us replace the partial functions in (16) by the classical statistical integrals

. ; /2 ' 3/2
m,T %% mgT )
za=(225)" 7= (220
- \2mx : \2ns®/

227 exn(P) _ [atm) D ] @upnsir ¢ (D
Zap = ZtZRZ v es(p (7) = [ ) 2 7o XP (?")’

(17)
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Oun={, 4o n (a7)
12, A= B,
where I is the Planck constant and the sum of energies of sufficiently remote atoms is taken as zero.
After substituting (17) into (16), we have
& r ) eel(=3) us)
Comparing (18) and (15), we find
6= (2apnzy, L= (GN)", (19)

where x; is the equilibrium spacing between atoms inthe molecule AB, hence ¢ agrees in order of magnitude
with its geometric dimensions and the hypothesis in [2] about the approximate equality of the parameter I to
the length of the mean free path in the medium is correct.

The rate constants were computed for a number of chemical reactions for the value (19) found for the
parameter [, and the results are compared with experiment, The friction coefficient was estimated from the
formula [2]: y = u(yA/mA + yg/mp), yi = 67rin/mj, i = A, B, where 7 is the viscosity coefficient of the
medium whose value is presented in [3] as a function of the temperature T, and rj and m; are the radius and
mass of the i-th reacting particle. The geometric dimensions of the particles and the parameters characteriz-
ing the potential of their interaction are taken from [4].

Results of the calculations are presented in Table 1. The asterisk on the symbol for the viscosity coef-
ficient means that it is obtained by linear extrapolation of the experimental data [3] into the domain of temper-
atures being considered, If it is taken into account that in practice it is often necessary to know just the order
of magnitude of the reaction constants, then the correspondence between the theoretical and experimental data
[5] is comparatively good.
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